_____Exam Seat No:_____

C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name : Mathematical Physics and Classical Mechanics					
Subject Code :4S	C05MPC1	Branch: B.Sc. (Physics)			
Semester : 5	Date :14/03/2019	Time : 10:30 To 01:30	Marks : 70		

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1		Attempt the following questions:	(14)
-	a)	Define Beta(β) function and give its basic mathematical formulae.	01
	b)	Define Gamma (γ)Give its and its basic mathematical formulae.	01
	c)	Define: Fourier series. Write its general formula and Fourier coefficients.	01
	d)	What are the Dirichlet conditions for a periodic function in Fourier series expansion?	01
	e)	For which type of Fourier series, the coefficients $a_0 \& a_n \neq 0$ and $b_n = 0$?	01
	f)	Draw graph for the Fourier series $f(x) = \begin{cases} -2; \ 0 < x < 1 \\ 2; \ 10 < x < 2 \end{cases}$.	01
	g)	Write the value / formula of a_0 , a_n and b_n for the extended intervals.	01
	h)	Write the formula of centripetal acceleration for a bead sliding along the uniformly rotating wire in a free space. Identify the associated physical properties.	01
	i)	Define : Generalised coordinates.	01
	j)	What is virtual displacement?	01
	k)	What do you understand by "Degree of Freedom"?	01
	l)	Define variational principle.	01
	m)	State :D'Alembert's Principle.	01
	n)	Define : Phase Space	01
		Attempt any four questions from Q-2 to Q-8	

Q-2 Attempt all questions (14) (A) Prove the following for the β function, where p > 0 and q > 0; (18) (1) $\beta(p,q) = 2 \int_{0}^{\pi/2} \sin^{2p-1}\theta \cdot \cos^{2q-1}\theta \cdot d\theta$. (2) $\beta(p,q) = \int_{0}^{1} \frac{x^{p-1} + x^{q-1}}{(1+x)^{p+q}} dx$. (B) Express f(x) = x as a half range sine and cosine series in 0 < x < 2. (14) Q-3 Attempt all questions (14)

(A) Prove the following results for the γ function.

08

Where,
$$p > 0$$
, $a = \text{Constant}$; $x = y$
(1) $\gamma(p) = \frac{1}{p} \int_0^\infty e^{-x^{1/p}} dx$.
(2) $\gamma(p) = \int_0^1 \left[\log\left(\frac{1}{y}\right) \right]^{p-1} dy$

(B) 06 Obtain the Fourier series to represent f(x) = |x|; where $-\pi < x < \pi$.

Q-4 Attempt all questions

Find a series of sine and cosine which represents $(x + x^2)$ in the interval **(A)** 07 $-\pi, x < \pi$ and deduce

$$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$$

(B) Find the series of sine and cosine functions for $f(x) = \begin{cases} 0 & when -\pi < x < 0 \\ \left(\frac{\pi}{4}\right)x & when \ 0 < x < \pi \\ and \ deduce \ \frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots \end{cases}$

Attempt all questions. Q-5

(A)

- (14)Define: Constraints. Name different types of constraints. Narrate 07
- Constrained Forces and their Properties. **(B)** Derive equation for the Simple Pendulum from the Lagrangian 07 Formulation.

Q-6 Attempt all questions Explain and prove Lagrange's equation of Motion for the nonconservative **(A)** System.

Derive equation for the Simple Harmonic Motion from the Lagrangian 04 **(B)** formulation.

Q-7 Attempt all questions

Derive Hamilton's Equation of motion 07 **(A)** Discuss and derive necessary formula for the L-C-R Series and Parallel 07 **(B)** circuit using Lagrangian formulation and Rayleigh's dissipation function.

Q-8

- **Attempt all questions** (14)Obtain Hamilton of simple pendulum with moving support. Also derive **(A)** 07 formula for the simple pendulum from Hamilton's equation.
- Describe an application of Lagrange's undetermined multiplier in quantum 07 **(B)** mechanical problem of the particle in a box.

(14)

07

(14)

10

(14)